











The button switch may be the simplest component in the electrical circuit, but it controls the lifeblood of the entire control circuit, so it is also called the "master switch". Understanding all kinds of button switches and using them skillfully and flexibly can make us get twice the result with half the effort.
Button switches are used to switch on or off small current circuits in a short period of time, and are mainly used in electrical control circuits. The current allowed to flow through the button switch is small, generally not more than 5A.
The button is generally composed of a button cap, a return spring, a bridge-type moving contact, a static contact, a pillar connecting rod, and a housing. The opening and closing state of the contacts when the button is not subjected to external force (that is, static), is divided into a stop button (that is, a dynamic break button), a start button (that is, a dynamic close button) and a reset button (that is, a combination of a dynamic close and a dynamic break. integrated button). When the button is under the action of external force, the opening and closing state of the contact changes: the normally open contact under static state is closed, and the normally closed contact under static state is open.
What is an emergency stop push button switch?
Emergency stop switch, also known as emergency stop switch, emergency switch, kill switch or emergency button, emergency stop button switch, is a fail-safe control switch that provides safety protection for machinery and equipment. People who use machines.
specify the following requirements: Emergency stop switches must be highly visible in colour, labeling and shape for easy operation in emergency situations. So the button has to be a red mushroom head with an arrow, emergency or stop symbol.
Common sizes for mushroom heads are 29mm, 30mm, 40mm or 60mm. The direct operating mechanism must be set on a normally closed contact and have a self-holding function. It requires a twist, pull or key to release the electrical contacts to allow the machine to restart.
Emergency Stop Button (E-stop for short) is an emergency stop device, usually used in mechanical and automation systems to prevent accidental injury or equipment damage. The following are the main functions and features of the emergency stop button in production:
effect:
Emergency stop: When a dangerous or unexpected event occurs, press the emergency stop button to stop the machine or equipment immediately to prevent further injury or equipment damage.
Convenient operation: The emergency stop button is usually located in an easily accessible position of the machine or equipment, and is generally easy to identify and operate.
System safety: By using the emergency stop button, it can reduce the negligence and error of the system operator and help ensure the safety of the system.
Protection equipment: the emergency stop button can automatically cut off the power supply in case of equipment overload, overheating, overvoltage, etc., so as to protect the equipment from damage.
characteristic:
Independent control: The emergency stop button is usually not related to the control of other equipment, and has an independent circuit to ensure that the machine or equipment can be stopped immediately under any circumstances.
Easy reset: Once the emergency stop button is pressed, it must be reset manually to restart the machine or equipment. This can prevent the machine or equipment from restarting in an unsafe state.
Reliability: The emergency stop button must be reliable, operable, and highly reliable and durable to ensure that it can work normally when needed.
Standardization: The color and shape of emergency stop button are generally standardized to facilitate identification and operation, and comply with relevant safety standards and regulations.
A button is a control switch that is operated by applying force from a certain part of the human body (usually a finger or palm) and has a spring energy storage reset. It is the most commonly used master electrical appliance.
The current allowed to pass through the contact of the button is relatively small, generally no more than 5A. Therefore, under normal circumstances, it does not directly control the on-off of the main circuit (high current circuit), but sends an instruction signal in the control circuit (small current circuit) to control electrical appliances such as contactors and relays, and then they
When the button is under the action of external force, the opening and closing state of the contact changes.
Buttons are ubiquitous in our daily lives, serving as a critical interface between humans and technology. These small yet powerful devices are used to activate a wide range of functions, from turning on a light switch to launching a rocket into space. In this article, we will explore the functions and manufacturing process of buttons.
Function of Buttons:
Buttons are used to initiate a specific function or operation. They can be simple or complex, ranging from a basic on/off switch to a multifunctional keypad. Some common examples of button functions include:
Power on/off: A button is used to turn on or off an electronic device.
Volume control: Buttons are used to adjust the volume of a device, such as a speaker or TV.
Navigation: Buttons are used to move through menus and select options on a screen.
Input: Buttons are used to enter data, such as letters or numbers, into a device.
Buttons can be found in a wide range of devices, including smartphones, computers, cars, and household appliances. They are designed to be easy to use and reliable, ensuring that users can interact with technology in a seamless and intuitive way.
Manufacturing of Buttons:
The process of manufacturing buttons involves several steps, including design, molding, and assembly. Here are the typical steps involved in creating a button:
Design: The first step is to create a design for the button. This involves deciding on the size, shape, and color of the button, as well as any symbols or text that will be included.
Mold making: Once the design is finalized, a mold is created using a special material, such as steel or aluminum. The mold is shaped to match the desired size and shape of the button.
Injection molding: The mold is then filled with a special material, such as plastic or rubber, and heated until it solidifies. This process is known as injection molding, and it allows for precise and consistent production of buttons.
Assembly: Once the button has been molded, it is ready for assembly. This involves attaching any necessary components, such as springs or circuits, and testing the button to ensure that it functions properly.
Overall, buttons are an essential part of our daily lives, and they are manufactured using a complex and precise process. With their wide range of functions and designs, buttons will continue to play a critical role in how we interact with technology for many years to come.
Meeting you in Canton fair
Date: April 15-19th
Address: No.380, Yuejiang Middle Road, Haizhu District, Guangzhou
Booth No.: Area B, 13-2B16
The signal light indicator is a device used to communicate with other drivers. It provides information about the driver’s intention and helps others take appropriate action.
· Automotive turn signal lights
· Traffic lights
The first signal light car was introduced in the late 1800s, and they were used to indicate the direction of traffic. These days, they also show if a vehicle is turning left or right, has its hazard lights on, or indicates a right turn by flashing its right-hand indicator.
A big part of being a safe driver is being able to inform other motorists of your intentions. Signaling lights are both at the frontal and rear part of the vehicle and are sometimes also called “blinkers” and “signal light indicators.” Depending on the side you flicked on, your car will indicate whether you’re turning left or right.
A rotor on which a moving contact is attached is received and rotatably held in a body, and a knob is received and held in the body side by side with the rotor and is movable. A plurality of first and second teeth are circumferentially staggered with each other on an outer perimeter surface of the rotor near one end and near the other end, respectively, in the direction of the axis of the rotor to project from the surface. An inclined surface is formed in each of the first and second teeth. A projecting part is formed on the knob to project toward the rotor. In response to a depression of the knob, the projecting part pushes the inclined surface of the second teeth to rotate the rotor and, in response to a return of the knob, pushes the inclined surface of the first teeth to rotate the rotor.
The invention provides a push-button switch including: a star wheel which is rotated by a constant angular step in one direction by a depression of a push button that automatically returns; an indenter which is pressed against the outer periphery of the star wheel by a spring; a contact which is attached so as to corotate with the star wheel, and which serves as a movable contact; and terminals with which the contact is contacted in accordance with a rotation angle, and which serve as stationary contacts. A small projection having a rounded tip end is disposed in each of ridge portions of the star wheel. Even when the slope of each ridge portion does not have a large inclination angle, the star wheel is prevented from being stopped at a position where the ridge portion is opposed to the indenter.